Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
J Biol Chem ; 299(5): 104648, 2023 05.
Article En | MEDLINE | ID: mdl-36965616

IsdG-type enzymes catalyze the noncanonical degradation of heme to iron, staphylobilin (SB), and formaldehyde (HCHO), presumably by binding heme in an unusually distorted conformation. Their unique mechanism has been elucidated for MhuD from Mycobacterium tuberculosis, revealing an unusual ring opening of hydroxyheme by dioxygenation. A similar mechanism has been postulated for other IsdG enzymes; however, MhuD, which is special as an IsdG-type enzyme, retains a formyl group in the linearized tetrapyrrole. Recent reports on Staphylococcus aureus IsdG have suggested the formation of SB retaining a formyl group (formyl-SB), but its identification is preliminary. Furthermore, the reaction properties of formyl-SB and the mechanism of HCHO release remain unclear. In this study, the complex reaction of S. aureus IsdG was reexamined to elucidate its mechanism, including the identification of reaction products and their control mechanisms. Depending on the reaction conditions, IsdG produced both SB and formyl-SB as the main product, the latter of which was isolated and characterized by MS and NMR measurements. The formyl-SB product was generated upon the reaction between hydroxyheme-IsdG and O2 without reduction, indicating the dioxygenation mechanism as found for MhuD. Under reducing conditions, hydroxyheme-IsdG was converted also to SB and HCHO by activating another O2 molecule. These results provide the first overview of the complicated IsdG reaction. The heme distortion in the IsdG-type enzymes is shown to generally promote ring cleavage by dioxygenation. The presence or absence of HCHO release can be influenced by many factors, and the direct identification of S. aureus heme catabolites is of interest.


Formaldehyde , Heme Oxygenase (Decyclizing) , Heme , Staphylococcus aureus , Catalysis , Formaldehyde/metabolism , Heme/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Staphylococcus aureus/enzymology , Mycobacterium tuberculosis/metabolism
2.
ACS Chem Biol ; 18(2): 340-346, 2023 02 17.
Article En | MEDLINE | ID: mdl-36662098

Selective inhibitors of Escherichia coli dihydrofolate reductase (eDHFR) are crucial chemical biology tools that have widespread clinical applications. We developed a set of eDHFR-selective photoswitchable inhibitors by derivatizing the structure of our previously reported methotrexate (MTX) azolog, azoMTX. Substitution of the skeletal p-phenylene group of azoMTX with bulky bis-alkylated arylazopyrazole moieties significantly increased its selectivity toward eDHFR over human DHFR. Owing to the physical properties of arylazopyrazoles, the new ligands exhibited nearly complete Z-to-E photoconversion and high thermostability of Z-isomers. In addition, real-time photoreversible control of eDHFR activity was achieved by alternatively switching the illumination light wavelengths.


Escherichia coli , Tetrahydrofolate Dehydrogenase , Humans , Tetrahydrofolate Dehydrogenase/chemistry , Methotrexate/chemistry , Methotrexate/pharmacology
3.
ACS Omega ; 7(32): 28378-28387, 2022 Aug 16.
Article En | MEDLINE | ID: mdl-35990454

Peptidylarginine deiminases (PADs) are enzymes that catalyze the Ca2+-dependent conversion of arginine residues into proteins to citrulline residues. Five PAD isozymes have been identified in mammals. Several studies have shown that the active-site pockets of these isozymes are formed when Ca2+ ions are properly bound. We previously characterized the structures of PAD3 in six states. Among these, we identified a "nonproductive" form of PAD3 in which the active site was disordered even though five Ca2+ ions were bound. This strange structure was probably obtained as a result of either high Ca2+ concentration (∼260 mM)-induced denaturation during the crystallization process or high Ca2+-concentration-induced autocitrullination. While autocitrullination has been reported in PAD2 and PAD4 for some time, only a single report on PAD3 has been published recently. In this study, we investigated whether PAD3 catalyzes the autocitrullination reaction and identified autocitrullination sites. In addition to the capacity of PAD3 for autocitrullination, the autocitrullination sites increased depending on the Ca2+ concentration and reaction time. These findings suggest that some of the arginine residues in the "nonproductive" form of PAD3 would be autocitrullinated. Furthermore, most of the autocitrullinated sites in PAD3 were located near the substrate-binding site. Given the high Ca2+ concentration in the crystallization condition, it is likely that Arg372 was citrullinated in the "nonproductive" PAD3 structure, the structure was slightly altered from the active form by citrulline residues, and probably inhibited Ca2+-ion binding at the proper position. Following Arg372 citrullination, PAD3 enters an inactive form; however, the Arg372-citrullinated PAD3 are considered minor components in autocitrullinated PAD3 (CitPAD3), and CitPAD3 does not significantly decrease the enzyme activity. Autocitrullination of PAD3 could not be confirmed at the low Ca2+ concentrations seen in vivo. Future experiments using cells and animals are needed to verify the effect of Ca2+ on the PAD3 structure and functions in vivo.

4.
ACS Sens ; 7(3): 748-757, 2022 03 25.
Article En | MEDLINE | ID: mdl-35238552

Although many Zn2+ fluorescent probes have been developed, there remains a lack of consensus on the labile Zn2+ concentrations ([Zn2+]) in several cellular compartments, as the fluorescence properties and zinc affinity of the fluorescent probes are greatly affected by the pH and redox environments specific to organelles. In this study, we developed two turn-on-type Zn2+ fluorescent probes, namely, ZnDA-2H and ZnDA-3H, with low pH sensitivity and suitable affinity (Kd = 5.0 and 0.16 nM) for detecting physiological labile Zn2+ in various cellular compartments, such as the cytosol, nucleus, ER, and mitochondria. Due to their sufficient membrane permeability, both probes were precisely localized to the target organelles in HeLa cells using HaloTag labeling technology. Using an in situ standard quantification method, we identified the [Zn2+] in the tested organelles, resulting in the subcellular [Zn2+] distribution as [Zn2+]ER < [Zn2+]mito < [Zn2+]cyto ∼ [Zn2+]nuc.


Fluorescent Dyes , Zinc , Cell Nucleus , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Microscopy, Fluorescence , Zinc/chemistry
5.
Angew Chem Int Ed Engl ; 60(20): 11378-11383, 2021 05 10.
Article En | MEDLINE | ID: mdl-33644979

The photoactivatable chemically induced dimerization (photo-CID) technique for tag-fused proteins is one of the most promising methods for regulating subcellular protein translocations and protein-protein interactions. However, light-induced covalent protein dimerization in living cells has yet to be established, despite its various advantages. Herein, we developed a photoactivatable covalent protein-labeling technology by applying a caged ligand to the BL-tag system, a covalent protein labeling system that uses mutant ß-lactamase. We further developed CBHD, a caged protein dimerizer, using caged BL-tag and HaloTag ligands, and achieved light-induced protein translocation from the cytoplasm to subcellular regions. In addition, this covalent photo-CID system enabled quick protein translocation to a laser-illuminated microregion. These results indicate that the covalent photo-CID system will expand the scope of CID applications in the optical manipulation of cellular functions.


Proteins/chemistry , Humans , Molecular Structure , Optical Phenomena , Photochemical Processes , Protein Binding , Protein Multimerization , Protein Transport
6.
Cell Chem Biol ; 27(12): 1521-1531.e8, 2020 12 17.
Article En | MEDLINE | ID: mdl-32997976

Fluorescent Zn2+ probes used for the quantitative analysis of labile Zn2+ concentration ([Zn2+]) in target organelles are crucial for understanding the role of Zn2+ in biological processes. Although several fluorescent Zn2+ probes have been developed to date, there is still a lack of consensus concerning the [Zn2+] in intracellular organelles. In this study, we describe the development of ZnDA-1H, a small-molecule fluorescent probe for Zn2+, which exhibits less pH sensitivity, high Zn2+ selectivity, and large fluorescence enhancement upon binding to Zn2+. Through protein labeling technology, ZnDA-1H was precisely targeted in various intracellular organelles, such as the nucleus, mitochondria, endoplasmic reticulum, and Golgi apparatus. ZnDA-1H exhibited a reversible fluorescence response toward labile Zn2+ in these organelles in live cells. Using this probe, the [Zn2+] in the Golgi apparatus was estimated to be 25 ± 1 nM, suggesting that labile Zn2+ plays a physiological role in the secretory pathway.


Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Golgi Apparatus/metabolism , Microscopy, Fluorescence , Zinc/metabolism , HeLa Cells , Humans , Staining and Labeling
7.
Biochemistry ; 59(40): 3918-3928, 2020 10 13.
Article En | MEDLINE | ID: mdl-32988197

Staphylococcus aureus uses IsdG and IsdI to convert heme into a mixture of staphylobilin isomers, 15-oxo-ß-bilirubin and 5-oxo-δ-bilirubin, formaldehyde, and iron. The highly ruffled heme found in the heme-IsdI and IsdG complexes has been proposed to be responsible for the unique heme degradation products. We employed resonance Raman (RR) and electron paramagnetic resonance (EPR) spectroscopies to examine the coordination and electronic structures of heme bound to IsdG and IsdI. Heme complexed to IsdG and IsdI is coordinated by a neutral histidine. The trans ligand is hydroxide in the ferric alkaline form of both proteins. In the ferric neutral form at pH 6.0, heme is six-coordinated with water as the sixth ligand for IsdG and is in the mixture of the five-coordinated and six-coordinated species for IsdI. In the ferrous CO-bound form, CO is strongly hydrogen bonded with a distal residue. The marker lines, ν2 and ν3, appear at frequencies that are distinct from other proteins having planar hemes. The EPR spectra for the ferric hydroxide and cyanide states might be explained by assuming the thermal mixing of the d-electron configurations, (dxy)2(dxz,dyz)3 and (dxz,dyz)4(dxy)1. The fraction for the latter becomes larger for the ferric cyanide form. In the ferric neutral state at pH 6.0, the quantum mechanical mixing of the high and intermediate spin configurations might explain the peculiar frequencies of ν2 and ν3 in the RR spectra. The heme ruffling imposed by IsdG and IsdI gives rise to unique electronic structures of heme, which are expected to modulate the first and subsequent steps of the heme oxygenation.


Bacterial Proteins/chemistry , Heme/chemistry , Mixed Function Oxygenases/chemistry , Oxygenases/chemistry , Staphylococcus aureus/chemistry , Carbon Monoxide/chemistry , Electron Spin Resonance Spectroscopy , Humans , Hydrogen Bonding , Spectrum Analysis, Raman , Staphylococcal Infections/microbiology
8.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 3): 130-137, 2020 Mar 01.
Article En | MEDLINE | ID: mdl-32133998

TRPV1, a member of the transient receptor potential (TRP) channels family, has been found to be involved in redox sensing. The crystal structure of the human TRPV1 ankyrin-repeat domain (TRPV1-ARD) was determined at 4.5 Šresolution under nonreducing conditions. This is the first report of the crystal structure of a ligand-free form of TRPV1-ARD and in particular of the human homologue. The structure showed a unique conformation in finger loop 3 near Cys258, which is most likely to be involved in inter-subunit disulfide-bond formation. Also, in human TRPV1-ARD it was possible for solvent to access Cys258. This structural feature might be related to the high sensitivity of human TRPV1 to oxidants. ESI-MS revealed that Cys258 did not form an S-OH functionality even under nonreducing conditions.


Ankyrin Repeat/physiology , TRPV Cation Channels/chemistry , TRPV Cation Channels/genetics , Ankyrins/chemistry , Ankyrins/genetics , Ankyrins/metabolism , Crystallization/methods , Humans , Protein Structure, Secondary , TRPV Cation Channels/metabolism
9.
Eur Biophys J ; 48(4): 361-369, 2019 May.
Article En | MEDLINE | ID: mdl-30937482

Transcriptional repressor Bach1 plays an important role in antioxidant response. Bach1 function is regulated by heme binding to the four cysteine-proline (CP) motifs in Bach1, which leads to inhibition of its activity. Three of these CP motifs are located N-terminal to the bZip (basic leucine zipper) domain that is responsible for DNA binding. Based on sequence analysis, the region surrounding these CP motifs was expected to be intrinsically disordered. Bach1 is one of few known intrinsically disordered proteins that accept multiple heme molecules for functional regulation, but the molecular mechanisms of heme binding and functional regulation remain unclear. Uncovering these mechanisms is important for understanding Bach1-mediated antioxidant response. Biophysical characterization revealed that 5-coordinated heme binding was unique to the CP motifs within the heme-binding region of Bach1, whereas 6-coordinated binding occurred nonspecifically. Comparison of the wild-type protein and a CP motif mutant indicated that the level of 6-coordinated heme binding was reduced in the absence of 5-coordinated heme binding. Analytical ultracentrifugation showed that the CP motif mutant protein had a more elongated conformation than the wild-type protein, suggesting that cysteines within the CP motifs contribute to intramolecular interactions in Bach1. Thus, heme binding at the CP motifs induces a global conformational change in the Bach1 heme-binding region, and this conformational change, in turn, regulates the biological activity of Bach1.


Basic-Leucine Zipper Transcription Factors/chemistry , Basic-Leucine Zipper Transcription Factors/metabolism , Biophysical Phenomena , Heme/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , HEK293 Cells , Humans , Mice , Protein Binding
10.
Tohoku J Exp Med ; 247(3): 153-159, 2019 03.
Article En | MEDLINE | ID: mdl-30853683

Heme is one of the key factors involved in the oxidative stress response of cells. The transcriptional repressor Bach1 plays an important role in this response through its heme-binding activity. Heme inhibits the transcriptional-repressor activity of Bach1, and can occur in two binding modes: 5- and 6-coordinated binding. The Cys-Pro (CP) motif has been determined to be the heme-binding motif of Bach family proteins. The sequence of Bach1 includes six CP motifs, and four CP motifs are functional. With the aim of elucidating the molecular mechanism of heme-Bach1 regulation, we conducted biophysical analyses focusing on the C-terminal region of mouse Bach1 (residues 631-739) which is located after the bZip domain and includes one functional CP motif. UV-Vis spectroscopy indicated that the CP motif binds heme via 5-coordinated bond. A mutant, which included a cysteine to alanine substitution at the CP motif, did not show 5-coordination, suggesting that this binding mode is specific to the CP motif. Surface plasmon resonance revealed that the binding affinity and stoichiometry of heme with the Bach1 C-terminal region were KD = 1.37 × 10-5 M and 2.3, respectively. The circular dichroism spectrum in the near-UV region exhibited peaks for heme binding to the CP motif. No significant spectral shifts were observed in the far-UV region when samples with and without heme were compared. Therefore, disordered-ordered transition such as "coupled folding and binding" is not involved in the Bach1-heme system. Consequently, the heme response of this C-terminal region is accomplished by disorder-disorder conformational alteration.


Basic-Leucine Zipper Transcription Factors/chemistry , Basic-Leucine Zipper Transcription Factors/metabolism , Heme/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Circular Dichroism , Mice , Protein Binding , Protein Domains , Protein Structure, Secondary , Spectrophotometry, Ultraviolet
11.
Chembiochem ; 20(11): 1382-1386, 2019 06 03.
Article En | MEDLINE | ID: mdl-30656808

Photopharmacology has attracted research attention as a new tool for achieving optical control of biomolecules, following the methods of caged compounds and optogenetics. We have developed an efficient photopharmacological inhibitor-azoMTX-for Escherichia coli dihydrofolate reductase (eDHFR) by replacing some atoms of the original ligand, methotrexate, to achieve photoisomerization properties. This fine molecular design enabled quick structural conversion between the active "bent" Z isomer of azoMTX and the inactive "extended" E isomer, and this property afforded quantitative control over the enzyme activity, depending on the wavelength of irradiating light applied. Real-time photoreversible control over enzyme activity was also achieved.


Folic Acid Antagonists/chemistry , Methotrexate/analogs & derivatives , Tetrahydrofolate Dehydrogenase/chemistry , Binding Sites , Escherichia coli/metabolism , Kinetics , Ligands , Molecular Conformation
12.
J Biol Chem ; 293(43): 16931-16939, 2018 10 26.
Article En | MEDLINE | ID: mdl-30237172

Discovery of unidentified protein functions is of biological importance because it often provides new paradigms for many research areas. Mammalian heme oxygenase (HO) enzyme catalyzes the O2-dependent degradation of heme into carbon monoxide (CO), iron, and biliverdin through numerous reaction intermediates. Here, we report that H2S, a gaseous signaling molecule, is part of a novel reaction pathway that drastically alters HO's products, reaction mechanism, and catalytic properties. Our prediction of this interplay is based on the unique reactivity of H2S with one of the HO intermediates. We found that in the presence of H2S, HO produces new linear tetrapyrroles, which we identified as isomers of sulfur-containing biliverdin (SBV), and that only H2S, but not GSH, cysteine, and polysulfides, induces SBV formation. As BV is converted to bilirubin (BR), SBV is enzymatically reduced to sulfur-containing bilirubin (SBR), which shares similar properties such as antioxidative effects with normal BR. SBR was detected in culture media of mouse macrophages, confirming the existence of this H2S-induced reaction in mammalian cells. H2S reacted specifically with a ferric verdoheme intermediate of HO, and verdoheme cleavage proceeded through an O2-independent hydrolysis-like mechanism. This change in activation mode diminished O2 dependence of the overall HO activity, circumventing the rate-limiting O2 activation of HO. We propose that H2S could largely affect O2 sensing by mammalian HO, which is supposed to relay hypoxic signals by decreasing CO output to regulate cellular functions. Moreover, the novel H2S-induced reaction identified here helps sustain HO's heme-degrading and antioxidant-generating capacity under highly hypoxic conditions.


Heme Oxygenase (Decyclizing)/metabolism , Hydrogen Sulfide/metabolism , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Animals , Biliverdine/metabolism , Catalysis , Heme/analogs & derivatives , Heme/metabolism , Humans , Iron/metabolism , Oxidation-Reduction , Rats
13.
Dalton Trans ; 46(25): 8104-8109, 2017 Jun 27.
Article En | MEDLINE | ID: mdl-28607990

HutZ is a heme-degrading enzyme in Vibrio cholerae. It converts heme to biliverdin via verdoheme, suggesting that it follows the same reaction mechanism as that of mammalian heme oxygenase. However, none of the key intermediates have been identified. In this study, we applied steady-state and time-resolved UV-vis absorption and resonance Raman spectroscopy to study the reaction of the heme-HutZ complex with H2O2 or ascorbic acid. We characterized three intermediates: oxyferrous heme, meso-hydroxyheme, and verdoheme complexes. Our data support the view that HutZ degrades heme in a manner similar to mammalian heme oxygenase, despite their low sequence and structural homology.


Bacterial Proteins/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Heme/analogs & derivatives , Heme/metabolism , Vibrio cholerae/enzymology , Animals , Ascorbic Acid/metabolism , Bacterial Proteins/genetics , Biliverdine/chemistry , Biliverdine/metabolism , Heme/chemistry , Heme Oxygenase (Decyclizing)/genetics , Humans , Hydrogen Peroxide/metabolism , Models, Molecular , Sequence Analysis, Protein , Spectrum Analysis, Raman
14.
J Biochem ; 160(5): 291-298, 2016 Nov.
Article En | MEDLINE | ID: mdl-27206783

Bach2 is a transcriptional repressor that plays an important role in the differentiation of T-cells and B-cells. Bach2 is functionally regulated by heme binding, and possesses five Cys-Pro Cys-Pro (CP)-motifs as the heme binding site. To reveal the molecular mechanism of heme binding by Bach2, the intrinsically disordered heme binding region (a.a. 331-520; Bach2331-520) and its CP-motif mutant were prepared and characterized with and without heme, by UV-Vis spectroscopy and thermal profiles. In addition, the charge-state-distributions (CSDs) were assessed by electrospray ionization mass spectrometry. The UV-Vis spectroscopy revealed a lack of five-coordinated heme binding in the CP-motif mutant of Bach2331-520 The thermal profile and CSDs of Bach2331-520 indicated that heme binding induces the destabilization of Bach2331-520 The thermal profile revealed that the wild type Bach2331-520 was destabilized more than the CP-motif mutant. The shift in the CSDs by heme binding suggested that heme binding causes Bach2331-520 to adopt a more compact conformation. In addition, heme binding to the CP-motif could reduce the flexibility of Bach2331-520 Consequently, the five-coordinated heme binding destabilizes Bach2331-520, by reducing the flexibility of the polypeptide chain.


Basic-Leucine Zipper Transcription Factors/chemistry , Heme/chemistry , Intrinsically Disordered Proteins/chemistry , Amino Acid Motifs , Basic-Leucine Zipper Transcription Factors/genetics , Binding Sites , Humans , Intrinsically Disordered Proteins/genetics
15.
Proc Natl Acad Sci U S A ; 113(14): 3779-84, 2016 Apr 05.
Article En | MEDLINE | ID: mdl-27006503

Bacterial pathogens must acquire host iron for survival and colonization. Because free iron is restricted in the host, numerous pathogens have evolved to overcome this limitation by using a family of monooxygenases that mediate the oxidative cleavage of heme into biliverdin, carbon monoxide, and iron. However, the etiological agent of tuberculosis, Mycobacterium tuberculosis, accomplishes this task without generating carbon monoxide, which potentially induces its latent state. Here we show that this unusual heme degradation reaction proceeds through sequential mono- and dioxygenation events within the single active center of MhuD, a mechanism unparalleled in enzyme catalysis. A key intermediate of the MhuD reaction is found to be meso-hydroxyheme, which reacts with O2 at an unusual position to completely suppress its monooxygenation but to allow ring cleavage through dioxygenation. This mechanistic change, possibly due to heavy steric deformation of hydroxyheme, rationally explains the unique heme catabolites of MhuD. Coexistence of mechanistically distinct functions is a previously unidentified strategy to expand the physiological outcome of enzymes, and may be applied to engineer unique biocatalysts.


Carbon Monoxide/chemistry , Heme Oxygenase (Decyclizing)/metabolism , Heme/metabolism , Mycobacterium tuberculosis/metabolism , Oxygen/chemistry , Catalysis , Catalytic Domain , Dioxygenases/metabolism , Iron/metabolism , Mixed Function Oxygenases/metabolism , Mycobacterium tuberculosis/enzymology , Oxidation-Reduction , Tuberculosis/microbiology
16.
Chempluschem ; 81(10): 1083-1089, 2016 Oct.
Article En | MEDLINE | ID: mdl-31964078

The insertion of cobaloxime catalysts in the heme-binding pocket of heme oxygenase (HO) yields artificial hydrogenases active for H2 evolution in neutral aqueous solutions. These novel biohybrids have been purified and characterized by using UV/visible and EPR spectroscopy. These analyses revealed the presence of two distinct binding conformations, thereby providing the cobaloxime with hydrophobic and hydrophilic environments, respectively. Quantum chemical/molecular mechanical docking calculations found open and closed conformations of the binding pocket owing to mobile amino acid residues. HO-based biohybrids incorporating a {Co(dmgH)2 } (dmgH2 =dimethylglyoxime) catalytic center displayed up to threefold increased turnover numbers with respect to the cobaloxime alone or to analogous sperm whale myoglobin adducts. This study thus provides a strong basis for further improvement of such biohybrids, using well-designed modifications of the second and outer coordination spheres, through site-directed mutagenesis of the host protein.

17.
Arch Biochem Biophys ; 565: 25-31, 2015 Jan 01.
Article En | MEDLINE | ID: mdl-25444856

The transcriptional repressor Bach2 regulates humoral and cellular immunity, including antibody class switching. It possesses a basic leucine zipper domain that mediates DNA binding. Heme inhibits the DNA-binding activity of Bach2 in vitro and induces the degradation of Bach2 in B cells. However, the structural basis of the heme-Bach2 interaction has not been identified. Spectroscopic analyses revealed that Bach2(331-520) is the heme-binding domain, as it includes three Cys-Pro motifs known to be important for heme binding. Heme-titration experiments demonstrated the presence of 5- and 6-coordinated heme-binding modes. Circular dichroism measurements indicated that Bach2(331-520) exists mostly in a random-coil conformation. However, dynamic light scattering analyses showed that, upon heme binding to Bach2(331-520), this region becomes denatured at a lower temperature, as compared with unbound Bach2(331-520). In addition, small-angle X-ray scattering and chemical modification analyses revealed that heme binding induces conformational alterations within the unstructured region. A GAL4-based luciferase assay in 293T cells showed that heme alters the protein interactions mediated by Bach2(331-520). These observations suggested that the unstructured region of Bach2 is important for heme binding, and consequently for its functional regulation.


Basic-Leucine Zipper Transcription Factors , Heme , Basic-Leucine Zipper Transcription Factors/chemistry , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Line , Heme/chemistry , Heme/genetics , Heme/metabolism , Humans , Leucine Zippers , Protein Binding , Protein Structure, Tertiary
18.
Biochemistry ; 52(18): 3025-7, 2013 May 07.
Article En | MEDLINE | ID: mdl-23600533

IsdG and IsdI from Staphylococcus aureus are novel heme-degrading enzymes containing unusually nonplanar (ruffled) heme. While canonical heme-degrading enzymes, heme oxygenases, catalyze heme degradation coupled with the release of CO, in this study we demonstrate that the primary C1 product of the S. aureus enzymes is formaldehyde. This finding clearly reveals that both IsdG and IsdI degrade heme by an unusual mechanism distinct from the well-characterized heme oxygenase mechanism as recently proposed for MhuD from Mycobacterium tuberculosis. We conclude that heme ruffling is critical for the drastic mechanistic change for these novel bacterial enzymes.


Bacterial Proteins/metabolism , Carbon Monoxide/metabolism , Formaldehyde/metabolism , Heme/metabolism , Mixed Function Oxygenases/metabolism , Oxygenases/metabolism , Staphylococcus aureus/metabolism , Hydrolysis
19.
J Biol Chem ; 288(14): 10101-10109, 2013 Apr 05.
Article En | MEDLINE | ID: mdl-23420845

MhuD is an oxygen-dependent heme-degrading enzyme from Mycobacterium tuberculosis with high sequence similarity (∼45%) to Staphylococcus aureus IsdG and IsdI. Spectroscopic and mutagenesis studies indicate that the catalytically active 1:1 heme-MhuD complex has an active site structure similar to those of IsdG and IsdI, including the nonplanarity (ruffling) of the heme group bound to the enzyme. Distinct from the canonical heme degradation, we have found that the MhuD catalysis does not generate CO. Product analyses by electrospray ionization-MS and NMR show that MhuD cleaves heme at the α-meso position but retains the meso-carbon atom at the cleavage site, which is removed by canonical heme oxygenases. The novel tetrapyrrole product of MhuD, termed "mycobilin," has an aldehyde group at the cleavage site and a carbonyl group at either the ß-meso or the δ-meso position. Consequently, MhuD catalysis does not involve verdoheme, the key intermediate of ring cleavage by canonical heme oxygenase enzymes. Ruffled heme is apparently responsible for the heme degradation mechanism unique to MhuD. In addition, MhuD heme degradation without CO liberation is biologically significant as one of the signals of M. tuberculosis transition to dormancy is mediated by the production of host CO.


Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Heme/chemistry , Mycobacterium tuberculosis/metabolism , Oxygenases/metabolism , Bacterial Proteins/chemistry , Carbon Monoxide/chemistry , Catalytic Domain , Heme Oxygenase (Decyclizing)/chemistry , Magnetic Resonance Spectroscopy/methods , Models, Chemical , Mycobacterium tuberculosis/chemistry , NADPH-Ferrihemoprotein Reductase/metabolism , Oxygenases/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Spectrum Analysis, Raman/methods
20.
J Inorg Biochem ; 113: 102-9, 2012 Aug.
Article En | MEDLINE | ID: mdl-22673156

This article discusses the accuracy of X-ray structural studies of heme oxygenase (HO) in complex with an unstable intermediate, verdoheme. Heme degradation by HO proceeds through three successive steps of O(2) activation. The mechanism of the third step, the ring opening of verdoheme, has been the least understood. Recent structural studies of the verdoheme-HO complex provide detailed information concerning this mechanism. Due to X-ray-induced photoreduction and the instability of verdoheme, it has been difficult to obtain an accurate structure for the ferrous verdoheme-HO complex. Therefore, accurate structural studies, including analysis of the electronic state of the verdoheme-HO complex, are needed to elucidate the proper reaction mechanism.


Heme Oxygenase (Decyclizing)/chemistry , Heme/analogs & derivatives , Oxygen/chemistry , Biliverdine/chemistry , Catalysis , Crystallography, X-Ray , Heme/chemistry , Humans , Models, Molecular , Oxidation-Reduction , Photochemical Processes , Quantum Theory , Water/chemistry
...